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Method of initial functions for beams  
Patel Rakesh, Dubey S.K., Pathak K.K. 

 

Abstract— In this paper, method of initial functions (MIF) is used for the analysis of concrete beams. The equations of two dimensional elasticity have 
been used for deriving the governing equations. Numerical solutions of the governing equations have been presented for simply supported beam loaded 
with uniformly distributed load. Two cases with varying depth to span ratio have been considered for analysis. The method of initial function is an analyti-
cal method of elasticity theory. No assumptions regarding the distribution of stress or displacements are needed in this method. This method can be 
applied for beam of any depth and loading. 

 
Index Terms—Beams, method of initial functions, stress, strain, displacement, Isotropic, Elasticity,  

——————————      —————————— 

1 INTRODUCTION                                                                     
he beam theories which are based on certain assumptions 
regarding the distribution of stresses and displacements 
are of a practical utility in the case of those problems, 

where the beam thickness is less. The results obtained by these 
theories are away from actual physical behavior of flexural 
members. The two major theories generally used for the beam 
analysis, The Bernoulli-Euler theory of bending and Timo-
shenko beam theory are based on assumptions. One common 
assumption is that transverse sections which are plane before 
bending remain plane after bending. However, it has been 
observed that beam sections especially in the case of deep 
beams, warp under loaded conditions. So in the problems in-
volving thick beams and layered beams it becomes difficult to 
obtain useful results using these theories. 
 
The method of initial function is an analytical method of elas-
ticity theory. The method makes it possible to obtain exact 
solutions of different types of problems, i.e., solutions without 
the use of hypotheses about the character of stress and strain. 
According to this method, the basic desired functions are the 
displacements and stresses, the system of differential equa-
tions which are obtained from equations of Hook’s law and 
equilibrium equations by replacing stresses by the displace-
ments according to elasticity relations. The order of the de-
rived equations depends on the stage at which the series rep-
resenting the stresses and displacements are truncated.  
 
From the literature we have observed that this method has 
various applications in structural engineering but very few 
researchers have used MIF for beams. A method for solving 

problems of theory of elasticity for the analysis thick plates as  
 

 
well as shells which is known as the method of initial func-
tions [1]. The method of initial function has been applied for 
deriving higher order theories for laminated composite thick 
rectangular plates [2]. It is used for the analysis of rectangular 
and long beams [3],[4]. MIF is applied for the analysis of or-
thotropic deep beams [5].  
 
There so many other theories which we are using for the anal-
ysis of beams.Developed Hyperbolic Shear Deformation Theo-
ry for transverse shear deformation effects. It is used for the 
static flexure analysis of thick isotropic beams [6]. A layer wise 
trigonometric shear deformation theory is used  for the analy-
sis of two layered cross ply laminated simply supported and 
fixed beams subjected to sinusoidal load [7].  
 
The displacements and stresses of the beam can be represent-
ed by the angle of rotation and the deflection of the neutral 
surface. Based on the refined beam theory, the exact equations 
for the beam without transverse surface loadings are derived 
[8].  

2  FORMULATION OF MIF 
 
According to this method, the basic desired functions are the 
displacements and stresses, the system of differential equa-
tions which are obtained from equations of Hook’s law and 
equilibrium equations by replacing stresses by the displace-
ments according to elasticity relations. The order of the de-
rived equations depends on the stage at which the series rep-
resenting the stresses and displacements are truncated. 
 
The equations of equilibrium for solids ignoring the body 
forces for two-dimensional case are: 
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The stress-strain relations for isotropic material are: 
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11 12x x yC Cσ ε ε= +     (3) 

12 22y x yC Cσ ε ε= +     (4) 

33xy xyCτ γ=      (5) 
 
The values of the coefficients C11 to C33   for isotropic materials 
are given in Appendix. 
 
The strain displacement relations for small displacements are: 
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Eliminating σx between equations (1) and (2) the following 
equations are obtained, which can be written in matrix form 
as;  
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Where, 
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The equation (9) can be expressed as: 
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The solution of equation (10) is 
 

{ } [ ] { }0
D yS e S =                          (11) 

 
Where {S0} is the vector of initial functions, being the value of 
the state vector {S} on the initial plane. 
If u0, v0, Y0 and X0 are values of u, v, Y and X respectively, on 
the initial plane, then 
 

{ } [ ]0 0 0 0 0, , , TS u v Y X=                             (12) 
 
[ ] [ ]D yL e=                      (13) 
 Expending (13) in the form of a series 
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                      (14) 

3    APPLICATION OF MIF 

An isotropic beam of length l, depth, H and loaded with uni-
formly distributed load p in the y- direction. The bottom plane 
of the beam is taken as the initial plane. Due to loading at the 
top plane of the beam one has  
X0 = Y0 = 0  
 
On the plane, y = H, the conditions are 
X = 0, Y = -p             
Y= -p on y = H,   
 
After simplification yields the governing partial differential 
equation: 

( . . )Yu Xv Yv XuL L L L pφ− = −        (15) 
 
Initial functions are obtained by substituting the value of Ф: 

                                        (16) 
                                   

0 Xuv L φ= −                             (17) 
 
From the value of initial functions the value of displacements 
and stresses are obtained. 
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4   NUMERICAL EXAMPLE 
The following values of beam dimensions are chosen for the 
particular problem, 
H =1000 mm and 2000 mm , l = 4000 mm 
The following material properties are taken: 
E=2.10x105 N/mm2, µ = 0.30, G = 0.10x105 N/mm2 
The boundary conditions of the simply supported edges are: 
X = Y = v = 0, at x = 0 and x = l 
 

0 Xvu L φ=
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The boundary conditions are exactly satisfied by the auxiliary 
function. 
Φ = A1sin (πx/l) 
A uniformly distributed load p = 25N/mm is assumed, on the 
top surface of the beam. 

5 RESULTS AND DISCUSSION 
 
The value of auxiliary function Φ is obtained from equation (15) 
using this value of auxiliary function, the values of initial func-
tions u0 and v0 is obtained from equation (16) and (17). 
 
The initial functions are operated upon by the transfer matrix 
successively across each layer until the entire beam is analysed 
and the stresses at the top surface are again obtained. Govern-
ing equation (15) of desired order according to the requirements 
of a beam problem is obtained using MIF. 
 
 The values of u0 and v0 are substituted in expression (18) for 
obtaining the values of stresses and displacements. The distri-
bution of stresses and displacements across the depth of a simp-
ly supported beam for uniformly distributed load are shown in 
figure 1 to 10.  
 

 
 
Figure 1. Variation of “u” through the thickness of beam 
for H/l= 0.25  

 
Figure 2. Variation of “v” through the thickness of beam 
for H/l= 0.25  
 

 
Figure 3. Variation of “Normal stress (Y)” through the 
thickness of beam for H/l= 0.25  
 

 
 
Figure 4. Variation of “Shear stress (X)” through the 
thickness of beam for H/l= 0.25 
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Figure 5. Variation of “Bending tress (σx)” through the 
thickness of beam for H/l= 0.25 
 

 
 
Figure  6 Variation of “u” through the thickness of beam 
for H/l= 0.50  

 

 
 
Figure 7. Variation of “v” through the thickness of beam  
for H/l= 0.50  
 

 

 
Figure  8. Variation of “Normal stress (Y)” through the  
thickness of beam for H/l= 0.50  

 
 

 
Figure  9.  Variation of “Shear stress (X)” through the  
thickness of beam for H/l= 0.50  

 

 
 
Figure  10. Variation of “Bending tress (σx)” through the  
thickness of beam for H/l= 0.50  

 
From figures 1 and 5 that the value of displacement ‘u’ is more 
at the top surface and less at the bottom surface. For H/l= 0.25 
the variation of ‘u’ is almost linear but for H/l=0.50 its varia-
tion is more at the top surface of beam. 
It can be seen from figures 2 and 7 that displacement ‘v’ is uni-
form throughout the depth for H/l= 0.25 and there is small var-
iation for H/l=0.50. 
 
From figures 3 and 8 it is observed that the value of normal 
stress (Y) is zero at the bottom and maximum at the top of 
beam. The physical condition of normal stress equal to the ap-
plied normal load at the top fibre is satisfied. 
 
It is seen from figures 4 and 9 that the shear stress (X) is maxi-
mum at mid depth in case of H/l= 0.25 and it is just below the 
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mid depth in case of H/l=0.50. 
 
From figures 5 and 10 it is observed that the variation of bend-
ing stress is almost linear in case of H/l= 0.25 but in the case of 
H/l=0.50 it is not linear near the top surface of the beam. The 
neutral axis shifts from mid depth towards bottom surface. It 
shows that the deep beam action comes into effect when H/l= 
0.25.   
 
6 CONCLUSIONS 

The nature of the curves obtained for stresses and displace-
ments is similar to those obtained by other theories. Deep beam 
action is clearly seen at H/= 0.25 and 0.50. MIF yields correct 
results for both shallow and deep beam. In the theories based 
on assumptions this effect is not seen. No correction factor is 
required in the case of deep beam.Hence it can be successfully 
used as an alternative approach for the analysis of beams. It also 
gives accurate results in case of small thickness, large thickness 
and layered members. In this method no assumption regarding 
the position of neutral axis is required. 
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Notation 
 l -   Effective span of beam 
d -   Total thickness of beam 
E -   Young’s modulus of Elasticity 
G -   Shear modulus of Elasticity 
µ  -   Poisson’s ratio 
ε  - Strain 
σx - Bending stress 
σy - Normal stress 
τxy - Shear stress 
u  - Displacements in x directions 
v-  Displacements in y directions 

x
α ∂
−
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